

MINI Cooper E

CLASSIC ELECTRIC FWD AUTOMATIC

Sustainability Rating

Clean Air

9.4

Energy Efficiency

9.7

Greenhouse Gases

10.0 /10

Driving Experience

Consumption & Range

ADEQUATE

Cold Winter Performance

ADEQUATE

Charging Capability

ADEQUATE

Our verdict

The electric Mini Cooper achieved a remarkably high result thanks to its compact size and resulting relatively low mass, small battery and low consumption figures in all tested conditions. The car stands out with an efficient powertrain and low energy demand for heating in cold winter days.

- The electric Mini has no exhaust emissions and performs well in both tyre and brake abrasion, thanks to very effective recuperation braking.
- Its low mass, small battery, and very low energy consumption in all test conditions contribute to a strong energy efficiency score.
- With lifecycle emissions of 103.5 g CO₂-eq./km and European production, it achieves the highest possible score in greenhouse gas performance.

The electric Mini impresses with its sustainability scoring, being small is not the only advantage. Compared to other similar vehicles, the Mini Cooper demonstrates very low consumption values in different driving conditions, even in the most challenging ones.

Disclaimer

Think before you print

9.4 /10

Comments

The electric Mini doesn't have any polluting exhaust emissions. It scores well for tyre abrasion and even better in the brake abrasion section due to its very high share of recuperation braking and thus reduced use of the friction brakes.

Exhaust emissions

Exhaust pollutant emissions are produced from combustion engines. Although current emission legislation is very strict, this type of emission directly affects air quality, and not all vehicles perform equally well. Read more

GOOD 🔵

2025

10.0/10

In laboratory					G 0 0	D 🛑	10.0 /10
Green NCAP performs a wide range of tests controlled conditions and guarantee that all comparable. Read more							
	NMHC	NO _x	NH ₃	СО	PN	PM	Score
Legal test (WLTP)	•					•	8.0/8
Warm weather	•		•			•	10.0/10
Highway	•					•	10.0/10
Winter cold start	•					•	10.0/10
Winter warm start							10.0/10

good adequate marginal weak poor not applicable

9.4 /10

Non-exhaust emissions

Driving a vehicle also produces emissions different from those of the exhaust pipe. Green NCAP evaluates vehicle properties that contribute to tyre and brake abrasion.

ADEQUATE -

8.0/10

Tyre wear

Tyre abrasion releases small particles during driving, and some vehicle properties have major impact on it. Heavier vehicles, wheel alignment causing increased slip angle, and aggressive acceleration responses all increase tyre wear and particle emissions. Read more

ADEQUATE -4.1/6

Result Score Influence of mass 2.1/3 1.0/1 Wheel alignment 1.0/2 Accelerator response

Brake wear

Recuperative braking - warm test

Brake dust, produced by friction brakes, can be mitigated through filters, enclosed brake systems (like drums), or by reducing friction brake use with regenerative braking in electrified vehicles. Containment keeps dust inside the system, while recuperation lowers brake wear. However, heavier vehicles still generate more brake abrasion due to their greater stopping demands. Read more

Brake dust mitigaton		
Brake dust containment		

GOOD

Score Result

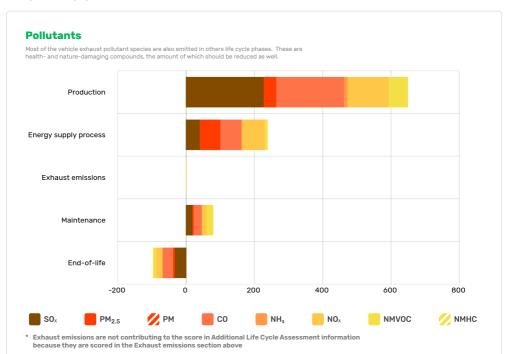
0.0/4

0.0/6

5.5/6

5.5/6

9.4 /10

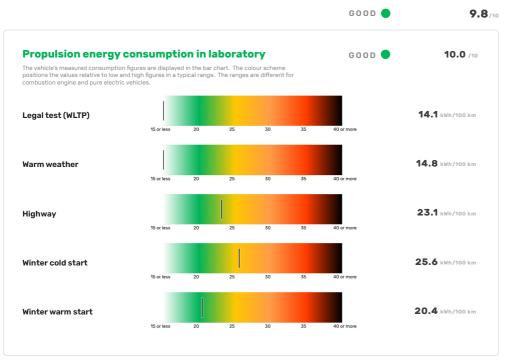

Additional Life Cycle Assessment information

Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime, 'from cradle to grave'. In this section, pollutants are estimated in the various stages of a vehicle's life other than use. The chart also displays the measured emissions related to usage, which are taken as an average from the tests and are scored separately in the 'Exhaust emissions' part above. The end-of-life approach uses results in negative values because the benefit of materials recovery and recycling exceeds the effort of obtaining and processing virgin raw materials.

GOOD 🔵

2025

9.2/10

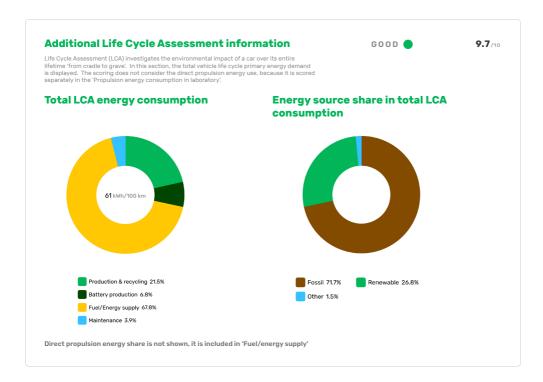

Energy Efficiency

9.7 /10

Comments

The relatively low mass and the small battery are beneficial for the life cycle primary energy demand assessment. This great result is supported by the very low consumption values in all tests, including the Cold Winter Tests and the high power demand Highway Test.

Energy demand



Energy Efficiency

9.7 /10

Rolling resistance

Rated here is the vehicle's resistance to movement at low speeds. Different factors have an impact on it, but the most significant one is mass.

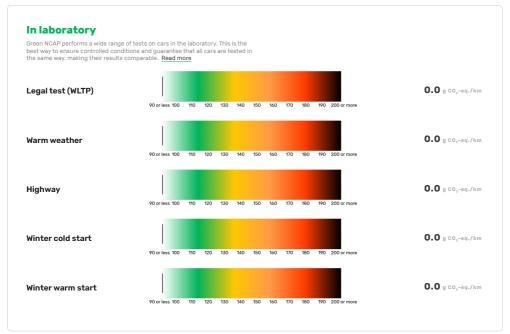
ADEQUATE -

8.3/10

🔼 Greenhouse Gases

10.0 /10

Comments


With no direct greenhouse gas emissions, the climate impact of the Mini comes from the processes of production, maintenance and end-of-life treatment, as well as the supply of the average European electricity mix. As the car is produced in Europe this elevates the results in this part of the assessment. The total life cycle greenhouse gas emissions are calculated to 103.5 g CO₂-eq./km, resulting in the maximum possible score in this part of the assessment.

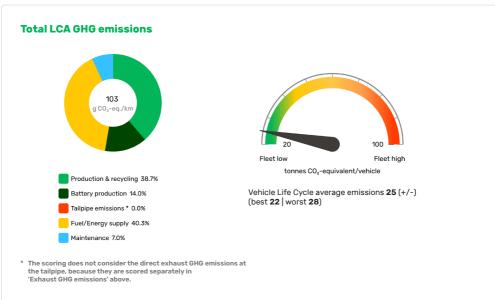
Exhaust GHG emissions

Combustion of conventional fuels releases greenhouse gases at the vehicle's tailpipe. The most significant of these gases are the emissions of CO₂. Green NCAP's assessment considers methane (CH₄) and laughing gas (N_2O) as well. Together, these are counted with their global warming potential to a sum known as CO₂ equivalent.

GOOD

10.0/10

Greenhouse Gases


10.0 /10

Additional Life Cycle Assessment information

Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime, 'from cradle to grave'. In this section, the total vehicle life cycle greenhouse gas emissions are displayed.

ADEQUATE _

7.4/10

Driving Experience

Consumption & Range

ADEQUATE

Cold Winter Performance

ADEQUATE

Charging Capability

ADEQUATE

Green NCAP Comment

For some aspects of daily use a bigger battery is beneficial, but the tested Mini is equipped with a very small one, offering only 36.6 kWh of usable capacity. While this is advantageous in the sustainability assessment, the evaluations in the Driving Experience reveal the trade-offs of the combination of a small battery and low consumption.

- The estimated real-world consumption values are seen as good in all assumed driving scenarios. But even with these figures, the small battery doesn't allow for long driving ranges they all fall in the 'poor' range and clearly position the tested Mini as a urban vehicle, which would require better planning prior to longer trips.
- Although the small battery limits the absolute driving range, which can be achieved when pre-heating the vehicle prior to cold winter condition trips, users are advised to do so, because the relative range increase can be huge. The Mini heats its cabin quickly and good insulation prevents it from easily escaping the interior. However, it should be mentioned that the readings in the rear footwell did not reach 16 C during the -7 C ambient temperature test.
- The charging performance is adequate both in AC home charging and in DC fast charging. The car does not offer any kind of bi-directional charging functionalities.

GOOD

POOR

GOOD

Estimated actual consumption

What consumption can be expected in real world conditions?

In-laboratory measured consumption values are only partially representative of real-world use. Green NCAP's estimates aim at providing more realistic figures, which are based on measured results, modified by correction factors.

Conditions	Urban	Rural	Highway	Mixed
Warm weather	14.5	15.3	18.4	15.9 kWh/100 km
Cold Winter	24.4	19.4	24.9	23.0 kWh/100 kn

Driving range

What driving range can be expected in real world conditions?

Of special importance to consumers is the real-world driving range of electric vehicles. Green NCAP estimates this based on measured data, modified by correction factors.

Conditions	Urban	Rural	Highway	Mixed
Warm weather	292	278	230	268
Cold Winter	174	219	171	184

Accuracy of display

Is the consumption figure on the display correct?

not applicable

Cold Winter Performance

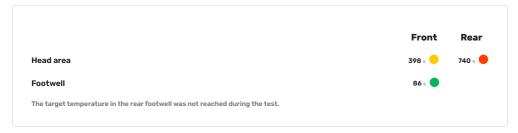
ADEQUATE -

Driving range benefit of pre-warming

ADEQUATE 🛑

How much further can you drive in winter, if the car is pre-warmed?

A cold vehicle has increased energy consumption at the start of its trip, mostly due to the cabin heating demand. Pre-warming the car while it is plugged, when possible, can significantly benefit its driving range in cold weather conditions. Green NCAP's winter tests are performed at -7°C.


Туре	Driving Range Benefit	Result
Urban trip	+95 km	•
Mixed trip	+42 km	•

Cabin heating

ADEQUATE -

Does the vehicle get warm quickly in winter?

This indicates the time needed to reach 16°C in seconds at different positions in the cabin.

not applicable

Cold Winter Performance

Additional heating functions

What functions can be used to improve heating comfort?

Unlike a combustion car, which usually uses the engine's waste heat to provide warmth to the cabin, in electric vehicles, the energy needed comes from the battery. Therefore, there is a trade-off between thermal comfort and energy consumption. Some additional heating functions can deliver good thermal comfort performance at lower energy use compared to heating up the entire cabin. If they can be scheduled or remotely activated before a trip, while the vehicle is still plugged, both comfort and driving range can be notably improved.

	Y/N	Fitment
Heat pump		Standard
Seating heating front		Optional
Seating heating rear	X	
Steering wheel heating		Standard for the tested version
Sheduled pre-heating of seats	×	
Scheduled steering wheel pre-heating	X	
Scheduled cabin air pre-heating		Standard
Smart cabin heating management	×	

Cabin thermal insulation

How well does the cabin maintain its temperature?

Assessed here is the average cabin temperature drop after 30 minutes, starting from 18°C when the outside temperature is -7°C and the vehicle is inactive.

GOOD

Charging Capabilities

Battery pre-conditioning

Does the vehicle have the ability to optimize the battery temperature for fast charging?

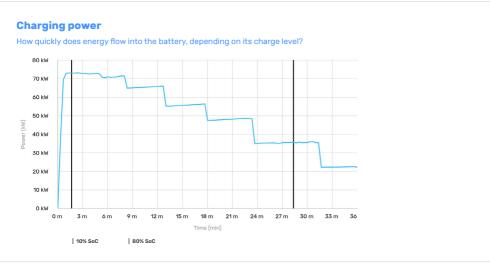
Fast charging is quicker when the battery temperature is in a certain range, and many vehicles possess the function to actively prepare for a coming fast charging event. Most use the charger destination in the navigational system to control the process, and some would offer a manual activation function.

Fast charging

ADEQUATE -

Green NCAP's fast charging test verifies the vehicle's ability to recharge fast, which is crucial at long trips or tight schedules. Although constantly improving, not all vehicles offer the same capabilities.

Charging Capabilities


ADEQUATE -

Fast charging

ADEQUATE -

Green NCAP's fast charging test verifies the vehicle's ability to recharge fast, which is crucial at long trips or tight schedules. Although constantly improving, not all vehicles offer the same capabilities.

not applicable

adequate

Charging Capabilities

ADEQUATE -

Home charging efficiency

ADEQUATE -

Is charging at home efficiently utilizing the energy withdrawn from the grid?

The assessed efficiency value is the grid-to-battery-output efficiency, which describes what share of the energy taken from the electricity grid is available for the vehicle to use for propulsion and other auxiliary functions. The value encompasses not only the charger efficiency but considers several other losses as well.

Home charging efficiency

89%

Maximum home charging power

11.0 kW

2025

Standard

Bidirectional charging

POOR

How capable is the vehicle of supplying energy from its battery to other devices or systems?

Bi-directional charging is available in some vehicles and is gaining increasing popularity. It comes with different power and functionality levels. However, battery usage for purposes additional to regular vehicle driving and charging might be disadvantageous for its durability and manufacturers might introduce limitations to protect it.

Power output

Not available

Compatibility

Vehicle-to-Load (V2L)

The inlet or the interior socket can provide AC power through an electrical domestic socket.

Vehicle-to-Household (V2H)

The vehicle can provide power to a household through a charger.

Vehicle-to-Grid (V2G)

The vehicle can return power to the arid.

Grid integration

No integration (just a socket for a stand-alone load). No scheduling option. Very basic visualisation.

Energy management system through the vehicle app (timers availability and power monitoring). Dedicated interface in the car, with mobile app monitoring

Advanced

Advanced settings available such as tariff and consumption control, linked to distributor energy prices. Advanced real time energy flow visualization. Al powered suggestions for optimal

not applicable

97%

Specifications

Vehicle class

City and Supermini

System power/torque

135 kW/290 Nm

Declared driving range

Overall 299 km City 397 km

Mass 1,561 kg

Emissions class

AX

Engine size

n.a.

Declared CO₂

n.a.

Heating concept

PTC Heater & Heat pump

Tested car

WMW12GC05RTA1xxxx

Declared consumption

14.1 kWh/100 km

Declared battery capacity

Usable (net) 36.6 kWh Installed (gross) 40.7 kWh

Tyres

205/50 R17

Publication date

09 2025

